

A resolution theorem for absolutely isolated singularities of holomorphic vector fields

Renato Mario Benazic Tome

— Dedicated to the memory of Ricardo Mañé.

Abstract. In this paper, the desingularization problem for an absolutely isolated singularity of a n-dimensional holomorphic vector field is solved. Also, we exhibit final forms under blowing-up for this type of singularities.

0. Introduction

In this paper we solve the desingularization problem for an absolutely isolated singularity of a n-dimensional holomorphic vector field. Moreover, we exhibit final forms under blowing-up for this type of singularities with algebraic multiplicity one.

Let us give the precise statement of these results. Let \mathcal{M}^n be a n-dimensional complex manifold. Let us consider a singular analytic foliation by curves on \mathcal{M}^n . By this we mean that at any point $p \in \mathcal{M}^n$ the foliation is generated by the holomorphic vector field

$$Z = \sum_{i=1}^{n} A_i \frac{\partial}{\partial z_i}, \ A_i \in \mathcal{O}_{n,p}; \ 1 \le i \le n \quad g.c.d.(A_1, \dots, A_n) = 1$$

where $\mathcal{O}_{n,p}$ is the ring of germs in p of analytic functions. In what follows we denote such a foliation by \mathcal{F}_Z and the functions A_i are called *components* of Z.

The algebraic multiplicity $m_p(\mathcal{F}_Z)$ (or $m_p(Z)$), of \mathcal{F}_Z at the point $p \in \mathcal{M}^n$, is the minimum of the orders $ord_p(A_i)$ (i.e., the order of the zero of A_i at p). We shall say that p is a singular point of \mathcal{F}_Z if $m_p(Z) \geq 1$.

The set of such points will be called $\operatorname{Sing}(\mathcal{F}_Z)$. A singular point $p \in \mathcal{M}^n$ is called *reduced* if $m_p(Z) = 1$ and the linear part of Z at p has at least one nonzero eigenvalue.

Let $E: \tilde{\mathcal{M}}^n \to \mathcal{M}^n$ be the blowing-up with center at the point $p \in \operatorname{Sing}(\mathcal{F}_Z)$. Then there exists a unique way of extending $E^*(\mathcal{F}_Z - \{p\})$ to a singular analytic foliation $\tilde{\mathcal{F}}_Z$ on a neighborhood of the projective space $\mathbb{C}P(n-1) = E^{-1}(p) \subset \tilde{\mathcal{M}}^n$, with singular set of codimension ≥ 2 . In this case we say that $\tilde{\mathcal{F}}_Z$ is the *strict transform* of \mathcal{F}_Z by E. We shall say that p is a non-dicritical singularity of \mathcal{F}_Z , when $E^{-1}(p)$ is invariant for $\tilde{\mathcal{F}}_Z$, i.e., it is the union of leaves and singularities of $\tilde{\mathcal{F}}_Z$. Otherwise p is called a dicritical singularity.

The desingularization problem for an isolated singularity $p \in \mathcal{M}^n$ (dicritical or not) of \mathcal{F}_Z consists of proving the existence of a proper holomorphic map $\phi: \tilde{\mathcal{M}}^* \to \mathcal{M}^n$ of a n-dimensional complex manifold $\tilde{\mathcal{M}}^*$ such that:

- a) $\phi^{-1}(p) = \bigcup_{i=1}^{N} D_i$; is a union of codimension one compact complex submanifolds with normal crossings.
- b) The pull-back foliation $\phi^*(\mathcal{F}_Z|_{\mathcal{M}^{n}-(p)})$ extends to a singular foliation of $\tilde{\mathcal{M}}^*$ with singular set of codimension ≥ 2 and such that all singular points are reduced.

A first step towards the solution of the desingularization problem is to assume that the codimension of the singular set of the lifted foliation is n. This motivates the following:

Definition 1. Let \mathcal{F}_Z be an analytic foliation by curves on the n-dimensional complex manifold \mathcal{M}^n . We say that $p \in \operatorname{Sing}(\mathcal{F}_Z)$ is a absolutely isolated singularity (A.I.S.) of \mathcal{F}_Z if and only if the following properties are verified:

- a) p is an isolated singularity of \mathcal{F}_Z ,
- b) let us denote $p = p_0$, $\mathcal{M}^n = \mathcal{M}_0^n$, $\mathcal{F}_Z = \mathcal{F}_0$, $\tilde{\mathcal{M}}^n = \mathcal{M}_1^n$, $\tilde{\mathcal{F}}_Z = \mathcal{F}_1$, $E_1 = E$. If we consider an arbitrary sequence of blowing-up's

$$\mathcal{M}_0^n \stackrel{E_1}{\longleftarrow} \mathcal{M}_1^n \stackrel{E_2}{\longleftarrow} \cdots \stackrel{E_N}{\longleftarrow} \mathcal{M}_N^n$$

where the center of each E_i is a point $p_{i-1} \in \text{Sing}(\mathcal{F}_{i-1})$ (here \mathcal{F}_i

denotes the strict transform of \mathcal{F}_{j-1} by E_j , $1 \leq i, j \leq N$), then $\#\operatorname{Sing}(\mathcal{F}_N) < \infty$.

Observe that our definition of an absolutely isolated singularity is more general than the one given in [C-C-S] (this last will be called *non-dicritical absolutely isolated singularity*), in the sense that we are not excluding the case of dicritical singularities appearing in some step of the blowing-up process.

In this paper we prove the following desingularization result:

Theorem A. Assume $p \in \mathcal{M}^n$ is an absolutely isolated singularity of \mathcal{F}_Z . Denote $p = p_0$, $\mathcal{M}^n = \mathcal{M}_0^n$, $\mathcal{F}_Z = \mathcal{F}_0$, $E_1 = E$. Then there exists a finite sequence of blowing-up's:

$$\mathcal{M}_0^n \stackrel{E_1}{\longleftarrow} \mathcal{M}_1^n \stackrel{E_2}{\longleftarrow} \cdots \stackrel{E_N}{\longleftarrow} \mathcal{M}_N^n$$

satisfying the following properties:

- i) The center of each E_i is a point $p_{i-1} \in \text{Sing}(\mathcal{F}_{i-1})$, where \mathcal{F}_j is the strict transform of the foliation \mathcal{F}_{j-1} by E_j , $(1 \leq i, j \leq N)$,
- ii) if $q \in \text{Sing}(\mathcal{F}_N)$, then q is reduced.

The main tool for proving this theorem is to use a formula relating the algebraic multiplicity of the original singularity to the Milnor numbers of the singularities which appear after a blowing-up. Observe that this program works at least when the set of the singularities at the projective space is isolated.

In dimension n=2, it is well known that after finitely many 0 of blowing-ups at singular points, the foliation \mathcal{F}_Z is transformed into a foliation \mathcal{F}_Z^* with a finite number of singularities, all of them *simple* or *irreducible* and lying in the divisor (see [C-L-S], [S]). This means that if $p^* \in \operatorname{Sing}(\mathcal{F}_Z^*)$ then \mathcal{F}_Z^* is locally generated by a vector field Z^* having a linear part with eigenvalues 1 and λ , where $\lambda \notin \mathbb{Q}_+$ (\mathbb{Q}_+ : strictly positive rational numbers).

The simple singularities may be thought of a *final forms* in the sense that they are persistent under new blowing-ups. The local topological structure of these singularities has been studied by several authors (see [C], [M-N]).

In [C-C-S], the authors extend the concept of simple singularity (or irreducible singularity) to n-dimensional case, provided that the singularity is absolutely isolated non-dicritical (i.e., do not appear dicritical singularities in the blowing-up process). Here, we will prove that if p is a reduced non-dicritical singularity of the foliation \mathcal{F}_Z such that p is an A.I.S. then p is an absolutely isolated non-dicritical singularity, and so we can apply the results in [C-C-S].

It must be mentioned that final forms for a three-dimensional vector field were given by Cano in [Ca1].

The desingularization problem, when n=2, was studied by I. Bendixson [B] and by H. Dulac [D] at the beginning of this century. It was solved by A. Seidenberg [S] in the sixties. Another proof was given by A. Ven Den Essen [V], his arguments use the concept of multiplicity of intersection between analytic curves. A strategy for the general three-dimensional case was developed by F. Cano [Ca2]; however a definite result is still missing.

We have to mention that, in the n-dimensional case, the unique known result was obtained by C. Camacho, F. Cano and P. Sad [C-C-S]. In this reference, the authors assume that p is a non-dicritical absolutely isolated singularity generalizing the methods given by C. Camacho and P. Sad in [C-S] when n = 2.

This paper is organized as follows: In section 1, we recall some elementary properties about blowing-up's and we prove a formula relating the Milnor number of a dicritical singularity with the algebraic multiplicity of the singularity and the Milnor numbers of the singularities of the strict transform. The section 2 is devoted to solve the desingularization problem for an A.I.S. Finally, in section 3 we study the final forms for reduced and absolutely isolated singularity of a foliation by curves.

I would like to thank Cesar Camacho, Manuel Carnicer, Alcides Lins Neto and Paulo Sad for the helpful conversation about this work.

1. The Milnor Number of an Isolated Dicritical Singularity

Let $\mathcal{O}_{n,p}$ be the ring of germs at $p \in U \subset \mathbb{C}^n$ of holomorphic functions

and let $I[A_1, \ldots, A_n] \subset \mathcal{O}_{n,p}$ be the ideal generated by the components of a holomorphic vector field Z. We define the *Milnor number* $\mu_p(Z)$ of Z at p, as

 $\mu_p(Z) = \dim_{\mathbb{C}} \left(\frac{\mathcal{O}_{n,p}}{I[A_1, \dots, A_n]} \right)$ (1.1)

This number is finite if and only if p is an isolated singularity of Z, and $\mu_p(Z) = 0$ if and only if p is a regular point of Z (see [G-H]).

The Milnor number again can be geometrically interpreted as the intersection index $i_o(A_1, \ldots, A_n)$ at p of the n analytic hypersurface generated by the components of Z (see [Ch]):

$$\mu_p(Z) = i_p(A_1, \dots, A_n) \tag{1.2}$$

Let $p \in U$ be an isolated singularity of the vector field Z, such that $m_p(Z) = \nu$ and \mathcal{F}_Z the foliation generated by Z. Let $\tilde{\mathcal{F}}_Z$ be the strict transform of \mathcal{F}_Z , which is generated by \tilde{Z} . When n = 2, there exists a formula relating ν to the Milnor number of Z at p and the Milnor numbers of the singularities of \tilde{Z} (see [M-M]): $\mu_p(Z)$ is given by

$$\mu_{p}(Z) = \begin{cases} \nu^{2} - \nu - 1 + \sum_{q \in E^{-1}(p)} \mu_{q}(\tilde{Z}), \\ & \text{if } P \text{ is a non-dicritical singularity,} \\ \nu^{2} + \nu - 1 + \sum_{q \in E^{-1}(p)} \mu_{q}(\tilde{Z}), \\ & \text{if } p \text{ is a dicritical singularity.} \end{cases}$$

$$(1.3)$$

Since $\#\operatorname{Sing}(\tilde{Z}) < \infty$, the sums in (1.3) are finite. There exists a n-dimensional generalization of (1.3) in the case that p is an isolated non-dicritical singularity of Z, provided that $\#\operatorname{Sing}(\tilde{\mathcal{F}}_Z) < \infty$ (see [C-C-S]):

$$\mu_p(Z) = \nu^n - \nu^{n-1} - \dots - \nu - 1 + \sum_{q \in E^{-1}(p)} \mu_q(\tilde{Z})$$
 (1.4)

This section is devoted to the proof of an analogous formula to (1.4) in the case that p is an isolated district singularity of Z such that $\#\operatorname{Sing}(\tilde{\mathcal{F}}_Z) < \infty$. Before proving this formula, let us recall some elementary facts about blowing-up's.

Let \mathcal{M}^n be a *n*-dimensional complex manifold and let us consider an analytic foliation by curves \mathcal{F}_Z on \mathcal{M}^n . Suppose that $p \in \mathcal{M}^n$ is an isolated singularity of \mathcal{F}_Z . Let $z=(z_1,\ldots,z_n)$ be local coordinates of a neighborhood U of p in \mathcal{M}^n such that $p=(0,\ldots,0)\in\mathbb{C}^n$. In these coordinates, \mathcal{F}_Z is generated by the holomorphic vector field $Z=\sum\limits_{i=1}^n A_i\frac{\partial}{\partial z_i}$, and if $m_0(Z)=\nu(\nu\in\mathbb{Z}^+)$, then the components A_i of Z have a Taylor development at $0\in\mathbb{C}^n$

$$A_i = \sum_{k>\nu} A_k^i, \ 1 \le i \le n \tag{1.5}$$

where each A_k^i are homogeneous polynomials of degree k.

For each $j=1,\ldots,n$ we define $U_j=\{(z_1,\ldots,z_n)\in\mathbb{C}^n\colon z_j\neq 0\}$ and $\tilde{U}_j=E^{-1}[U_j]$, where E is the blowing-up with center at $0\in\mathbb{C}^n$. In \tilde{U}_j we introduce coordinates $y=(y_1,\ldots,y_n)$ and E has the following expression:

$$E(y_1, ..., y_n) = (z_1, ..., z_n);$$
 where $y_j = z_j$ and $y_i = z_i/z_j$ if $i \neq j$ (1.6)

and

$$E^{-1}(0) \cap \tilde{U}_j = \{ (y_1, \dots, y_n) \in \tilde{U}_j : y_j = 0 \}$$
 (1.7)

In this chart, the pull-back of Z by E is generated by:

$$E^*Z = A_j \circ E \frac{\partial}{\partial y_j} + \sum_{\substack{i=1\\i \neq j}}^n \left(\frac{A_i \circ E - y_i A_j \circ E}{y_j} \right) \frac{\partial}{\partial y_i}$$
(1.8)

From (1.5) and (1.8):

$$E^*Z(y) = \left(\sum_{k \ge \nu} y_j^k A_k^j(\hat{y})\right) \frac{\partial}{\partial y_j} + \sum_{\substack{i=1\\i \ne j}}^n \left(\sum_{k \ge \nu} y_j^{k-1} [A_k^i(\hat{y}) - y_i A_k^j(\hat{y})]\right) \frac{\partial}{\partial y_i}$$

$$(1.9)$$

The following result shows that the condition of \mathcal{F}_Z has a district singularity in $0 \in \mathbb{C}^n$ can be characterized in terms of the polynomials $A^i_{\nu}(1 \leq i \leq n)$, i.e., of $J^{\nu}_0(Z)$: the jet of order ν of Z at the origin.

Proposition 1. With the above notations, the following assertions are equivalent:

- a) $0 \in \mathbb{C}^n$ is a discritical singularity of \mathcal{F}_Z .
- b) $z_j A_{\nu}^i z_i A_{\nu}^j = 0$; $\forall 1 \le i < j \le n$.
- c) $J_0^{\nu}(Z) = P_{\nu-1}R$, where $R = \sum_{i=1}^n z_i \frac{\partial}{\partial z_i}$ is the radial vector field and $P_{\nu-1}$ is a homogeneous polynomial of degree $\nu-1$.

The proof of Proposition 1 is not difficult and it is left to the reader.

Remark. If p is a districtional singularity of \mathcal{F}_Z and $P_{\nu-1}$ is the polynomial of Proposition 1, then we can define the following algebraic hypersurface on $\mathbb{C}P(n-1)$

$$S = \{ [z_1; \dots; z_n] \in \mathbb{C}P(n-1): P_{\nu-1}(z_1, \dots, z_n) = 0 \}$$

It is not difficult to see that $\operatorname{Sing}(\tilde{\mathcal{F}}_Z) \subseteq S$ and if $\tilde{p} \in S - \operatorname{Sing}(\tilde{\mathcal{F}}_Z)$ then the leaf of $\tilde{\mathcal{F}}_Z$ through \tilde{p} is tangent to the projective space $E^{-1}(0)$.

Returning to the initial problem, we have the following result:

Theorem 1. Let Z be a holomorphic vector field with isolated singularity at $0 \in \mathbb{C}^n$ such that \tilde{Z} has isolated singularities. If $0 \in \mathbb{C}^n$ is a discritical singularity and $m_0(Z) = \nu$, then

$$\mu_0(Z) = g(\nu + 1) + \sum_{q \in E^{-1}(0)} \mu_q(\tilde{Z}),$$

where $g(\nu) = \nu^n - \nu^{n-1} - \dots - \nu - 1$.

Proof. Let $Z = \sum_{k \geq \nu} Z_k$ where $Z_{\nu} = P_{\nu-1} \sum_{i=1}^n z_i \frac{\partial}{\partial z_i}$. We consider the vector field $Z_{\nu+1} + R$ (with $R = \sum_{k > \nu+2} Z_k$) and we suppose that:

- a) $Z_{\nu+1} + R$ has isolated singularity at $0 \in \mathbb{C}^n$ and
- b) the strict transform $\tilde{Z}_{\nu+1} + \tilde{R}$ has isolated singularities at the divisor $E^{-1}(0)$.

It is easy to see that $0 \in \mathbb{C}^n$ is a non-district isolated singularity of the vector field $Z_{\nu+1} + R$, thus from (1.4) we have that:

$$\mu_0(Z_{\nu+1} + R) = g(\nu + 1) + \sum_{\tilde{q} \in E^{-1}(0)} \mu_{\tilde{q}}(\tilde{Z}_{\nu+1} + \tilde{R})$$
 (1.10)

where $q(\nu) = \nu^n - \nu^{n-1} - \dots - \nu - 1$.

From the hypothesis b) we can suppose, without loss of generality, that the singularities of $\tilde{Z}_{\nu-1} + \tilde{R}$ are in the chart \tilde{U}_1 of $\tilde{\mathbb{C}}^n$. Therefore

$$E^*[Z_{\nu+1} + R](y) = \left(\sum_{k \ge \nu+1} y_1^k A_k^1(\hat{y})\right) \frac{\partial}{\partial y_1} + \sum_{i=2}^n \left(\sum_{k \ge \nu+1} y_1^{k-1} [A_k^i(\hat{y}) - y_i A_k^1(\hat{y})]\right) \frac{\partial}{\partial y_i}$$

where $y = (y_1, \ldots, y_n)$ and $\hat{y} = (1, y_2, \ldots, y_n)$. Thus, $E^*[Z_{\nu+1} + R]$ is divisible by y_1^{ν} and we have that:

$$\tilde{Z}_{\nu+1}(y) + \tilde{R}(y) = y_1 A_{\nu+1}^1(\hat{y}) \frac{\partial}{\partial y_1} + \sum_{i=2}^n \left(A_{\nu+1}^i(\hat{y}) - y_i A_{\nu+1}^1(\hat{y}) \right) \frac{\partial}{\partial y_i} + y_i \tilde{R}(y)$$
(1.11)

We conclude that the singularities of $\tilde{Z}_{\nu+1} + \tilde{R}$ are the points $\tilde{q}_j = (0, y_2^j, \dots, y_n^j), 1 \leq j \leq N$, where y_2^j, \dots, y_n^j satisfies the following conditions:

$$A_{\nu+1}^{i}(1, y_{2}^{j}, \dots, y_{n}^{j}) - y_{i}^{j} A_{\nu+1}^{1}(1, y_{2}^{j}, \dots, y_{n}^{j})$$

$$= 0, \ 2 \le i \le n, \ i \le j \le N$$

$$(1.12)$$

For $\epsilon > 0$, we consider the perturbation $Z_{\epsilon} = \epsilon Z_{\nu} + Z_{\nu+1} + R$. Clearly $0 \in \mathbb{C}^n$ is a districtional isolated singularity of Z_{ϵ} and $E^*(Z_{\epsilon})$ is divisible by y_1^{ν} . We have that

$$\tilde{Z}_{\epsilon}(y) = \epsilon P_{\nu-1}(\hat{y}) \frac{\partial}{\partial y_1} + \tilde{Z}_{\nu+1}(y) + \tilde{R}(y)$$
(1.13)

or equivalently:

$$\tilde{Z}_{\epsilon}(y) = \left[\epsilon P_{\nu-1}(\hat{y}) + y_1 A_{\nu+1}^1(\hat{y})\right] \frac{\partial}{\partial y_1} + \sum_{i=2}^n \left(A_{\nu+1}^i(\hat{y}) - y_i A_{\nu+1}^1(\hat{y})\right) \frac{\partial}{\partial y_i} + y_1 \tilde{R}(y) \tag{1.14}$$

Then, we have two kinds of singularities of \tilde{Z}_{ϵ} :

- Singularities inside the divisor;
- Singularities outside the divisor.

Singularities inside the divisor are the points

$$\tilde{p}_j = (0, y_2^j, \dots, y_n^j)$$

where y_2^j, \ldots, y_n^j satisfy the conditions (1.12) and

$$P_{\nu-1}(1, y_2^j, \dots, y_n^j) = 0.$$

Then there exists $0 \le N_i < N$ such that $\tilde{p}_j = \tilde{q}_j, \forall 1 \le j \le N_1$. Observe that these points are also singularities of \tilde{Z} .

Singularities outside the divisor are the points

$$\tilde{p}_k(\epsilon) = (y_1^k(\epsilon), \dots, y_n^k(\epsilon))$$

with $y_1^k(\epsilon) \neq 0$. From (1.13), it follows that

$$\lim_{\epsilon \to 0} \tilde{p}_k(\epsilon) = \tilde{q}_j, \ \forall \ k \in I_j, \ \forall \ 1 \le j \le N;$$

where I_i is a finite set of indices.

For each singularity $\tilde{p}_k = \tilde{p}_k(\epsilon)$ of \tilde{Z}_{ϵ} outside the divisor, we denote $p_k = E(\tilde{p}_k)$ and so:

$$\mu_{p_k}(Z_{\epsilon}) = \mu_{\tilde{p}_k}(\tilde{Z}_{\epsilon}) \tag{1.15}$$

If ϵ is small enough, it follows that:

$$\mu_{\tilde{q}_{j}}(\tilde{Z}_{\nu+1} + \tilde{R}) = \begin{cases} \mu_{\tilde{p}_{j}}(\tilde{Z}_{\epsilon} + \sum_{k \in I_{j}} \mu_{\tilde{p}_{k}}(\tilde{Z}_{\epsilon}), & \text{if } 1 \leq j \leq N_{1} \\ \sum_{k \in I_{j}} \mu_{\tilde{p}_{k}}(\tilde{Z}_{\epsilon}), & \text{if } N_{1} + 1 \leq j \leq N \end{cases}$$

$$(1.16)$$

and

$$\mu_0(Z_{\nu+1} + R) = \mu_0(Z_{\epsilon}) + \sum_{j=1}^{N} \sum_{k \in I_j} \mu_{p_k}(Z_{\epsilon})$$
 (1.17)

From (1.10), (1.15), (1.16) and (1.17), we have that:

$$g(\nu+1) + \sum_{j=1}^{N} \mu_{\tilde{q}_{j}}(\tilde{Z}_{\nu+1} + \tilde{R}) = \mu_{0}(Z_{\epsilon}) + \sum_{j=1}^{N} \sum_{k \in I_{j}} \mu_{\tilde{p}_{k}}(\tilde{Z}_{\epsilon}) =$$

$$= \mu_{0}(Z_{\epsilon}) + \sum_{j=1}^{N} \mu_{\tilde{q}_{j}}(\tilde{Z}_{\nu+1} + \tilde{R}) - \sum_{j=1}^{N_{1}} \mu_{\tilde{p}_{j}}(\tilde{Z}_{\epsilon})$$

Thus:

$$\mu_0(Z_{\epsilon}) = g(\nu + 1) + \sum_{\tilde{q} \in E^{-1}(0)} \mu_{\tilde{q}}(\tilde{Z}_{\epsilon})$$

$$\tag{1.18}$$

Now, we assert that $\mu_0(Z) = \mu_0(Z_{\epsilon})$ and $\mu_{\tilde{p}_j}(\tilde{Z}) = \mu_{\tilde{p}_j}(\tilde{Z}_{\epsilon})$, $1 \leq j \leq N_1$. In fact, since $Z_{\nu}(0) = 0$, there exists r > 0 such that

$$||Z|| < r \Rightarrow ||Z(z) - Z_{\epsilon}(z)|| = (1 - \epsilon)||Z_{\nu}(z)|| < 2.$$

Let $0 < r_1 < r$ and consider the homotopy $G: [0,1] \times S_{r_1}^{2n-1} \to S^{2n-1}$ given by

$$G(t,z) = \frac{tZ_{\epsilon}(z) + (1-t)Z(z)}{||tZ_{\epsilon}(z) + (1-t)Z(z)||},$$

then G(0,z) = Z(z)/||Z(z)|| and $G(1,z) = Z_{\epsilon}(z)/||Z_{\epsilon}(z)||$, hence $\mu_0(Z) = \mu_0(Z_{\epsilon})$.

Let $\tilde{p}_j = (0, y_2^j, \dots, y_n^j)$ $(1 \leq j \leq N_1)$ a singularity of \tilde{Z}_{ϵ} (it is also singularity of \tilde{Z}), then $P_{\nu-1}(1, y_2^j, \dots, y_n^j) = 0$. It follows that there exists $\tilde{r} > 0$ such that

$$||(y_2,\ldots,y_n)-(y_2^j,\ldots,y_n^j)|| < \tilde{r} \Rightarrow |P_{\nu-1}(1,y_2,\ldots,y_n)| < \frac{2}{1-\epsilon}.$$

Thus from (1.14), we have that

$$||y - \tilde{p}_j|| < \tilde{r} \Rightarrow ||\tilde{Z}(y) - \tilde{Z}_{\epsilon}(y)|| = (1 - \epsilon)|P_{\nu-1}(1, y_2, \dots, y_n)| < 2.$$

Let $0 < \tilde{r}_1 < \tilde{r}$ and consider the homotopy $\tilde{G}: [0,1] \times S^{2n-1}_{\tilde{r}_1}(\tilde{p}_j) \to S^{2n-1},$ $(S^{2n-1}_{\tilde{r}_1}(\tilde{p}_j) = \{||y - \tilde{p}_j|| = \tilde{r}_1\})$ given by

$$\tilde{G}(t,y) = \frac{t\tilde{Z}_{\epsilon}(y) + (1-t)\tilde{Z}(y)}{||t\tilde{Z}_{\epsilon}(y) + (1-t)\tilde{Z}(y)||},$$

then then $\tilde{G}(0,y) = \tilde{Z}(y)/||\tilde{Z}(y)||$ and $\tilde{G}(1,z) = \tilde{Z}_{\epsilon}(z)/||\tilde{Z}_{\epsilon}(z)||$, hence $\mu_{\tilde{p}_{j}}(\tilde{Z}) = \mu_{\tilde{p}_{j}}(\tilde{Z}_{\epsilon})$, \forall $1 \leq j \leq N_{1}$, and so the assertion is proved.

From (1.18) it follows that

$$\mu_0(Z) = g(\nu + 1) + \sum_{\tilde{q} \in E^{-1}(0)} \mu_{\tilde{q}}(\tilde{Z})$$
 (1.19)

In the case that $0 \in \mathbb{C}^n$ is not isolated singularity of $Z_{\nu+1} + \mathbb{R}$, we consider the perturbation $Z_{\delta} = Z_{\nu} + Z_{\nu+1} + \delta Y_{\nu+1} + R$ where $Y_{\nu+1}$ is a homogeneous vector field of degree $\nu + 1$ such that $0 \in \mathbb{C}^n$ is an isolated

singularity of $Z_{\nu+1} + \delta Y_{\nu+1}$. Observe that if $\delta > 0$ is small enough then $0 \in \mathbb{C}^n$ is an isolated singularity of Z_{δ} . In fact, since that $Y_{\nu+1}(0) = 0$, there exists r > 0 such that $||z|| < r \Rightarrow ||Y_{\nu+1}(z)|| < 1$. As $0 \in \mathbb{C}^n$ is an isolated singularity of Z, then we define $m = \inf\{||Z(z)||: ||z|| = r'\}$, where 0 < r' < r. Thus $||Z_{\delta}(z)|| \ge ||Z(z)|| - \delta ||Y_{\nu+1}(z)|| > m - \delta$. Therefore, if $\delta < m$ then $||Z_{\delta}(z)|| > 0$, $\forall ||z|| = r'$, hence $0 \in \mathbb{C}^n$ is isolated singularity of Z_{δ} . Therefore, the vector field Z_{δ} has dicritical isolated singularity in $0 \in \mathbb{C}^n$, and satisfies the conditions a), b) above. From (1.19):

$$\mu_0(Z_{\delta}) = g(\nu + 1) + \sum_{\tilde{q} \in E^{-1}(0)} \mu_{\tilde{q}}(\tilde{Z}_{\delta})$$
 (1.20)

As before, we can to prove that $\mu_0(Z) = \mu_0(Z_\delta)$ and $\mu_{\tilde{p}}(\tilde{Z}) = \mu_{\tilde{p}}(\tilde{Z}_\delta)$. This finishes the proof of Theorem 1.

2. The Theorem of Desingularization

This section is devoted to the proof of Theorem A. Notice that, by Theorem 1 and the formula (1.4), for p singularity of the vector field Z with $m_p(Z) = \nu$, we can write

$$\mu_p(Z) = g(\sigma) + \sum_{\tilde{p} \in E^{-1}(p)} \mu_q(\tilde{Z})$$
(2.1)

where $g(\sigma) = \sigma^n - \sigma^{n-1} - \cdots - \sigma - 1$, with $\sigma = \nu$ if p is a non-districtional singularity of Z and $\sigma = \nu + 1$, otherwise. It is not difficult to see that the function g is an increasing function for all $\sigma \geq 2$.

Theorem A. Assume $p \in \mathcal{M}^n$ is an absolutely isolated singularity of \mathcal{F}_Z . Denote $p = p_0$, $\mathcal{M}^n = \mathcal{M}_0^n$, $\mathcal{F}_Z = \mathcal{F}_0$, $E_1 = E$. Then there exists a finite sequence of blowing-up's:

$$\mathcal{M}_0^n \overset{E_1}{\longleftarrow} \mathcal{M}_1^n \overset{E_2}{\longleftarrow} \cdots \overset{E_N}{\longleftarrow} \mathcal{M}_N^n$$

satisfying the following properties:

- i) The center of each E_i is a point $p_{i-1} \in \text{Sing}(\mathcal{F}_{i-1})$, where \mathcal{F}_j is the strict transform of the foliation \mathcal{F}_{j-1} by E_j , $(1 \le i, j \le N)$;
- ii) if $q \in \text{Sing}(\mathcal{F}_N)$, then q is reduced.

Proof. Suppose that $m_p(Z) = \nu > 1$. Since p is an A.I.S. of \mathcal{F}_Z , from (2.1), we obtain that

$$\mu_{\tilde{p}}(\tilde{Z}) < \mu_p(Z); \ \forall \ \tilde{p} \in E^{-1}(p).$$

Since $\mu_p(Z) \geq m_p(Z)$, $\forall p$; after a finite number of successive blowing-up's $E_1 = E, E_2, \ldots, E_N$ with centers at singular points, we will obtain only points with algebraic multiplicity ≤ 1 .

We define $\phi = E_N \circ E_{N-1} \circ \cdots \circ E$, it follows that $\phi \colon \mathcal{M}_N^n \to \mathcal{M}_0^n$ is a proper holomorphic map and the pull-back $\phi^*(\mathcal{F}_0|_{\mathcal{M}^n-\{p\}})$ extends to a singular foliation \mathcal{F}_N on \mathcal{M}_N^n with singular set of codimension n.

Thus, if $q \in \text{Sing}(\mathcal{F}_N)$ then $m_q(\mathcal{F}_N) = 1$. The Theorem A is a consequence of the following:

Lemma 1. Let $p \in \mathcal{M}^n (n \geq 3)$ be a singular point of \mathcal{F}_Z such that $m_p(Z) = 1$ and p is not reduced. Then p is not an A.I.S.

Proof of Lemma 1. Let $z=(z_1,\ldots,z_n)$ be local coordinates of a neighborhood of p in \mathcal{M}^n such that $p=(0,\ldots,0)\in\mathbb{C}^n$. In these coordinates, \mathcal{F}_Z is generated by the holomorphic vector field $Z=\sum\limits_{i=1}^n A_i\frac{\partial}{\partial z_i}$, where $A_i=\sum\limits_{k\geq \nu}A_k^i$ and A_k^i are homogeneous polynomials of degree k. Since p is not a reduced singular point, by the Jordan canonical form we have that

$$Z(z) = (z_2 + \sum_{k \geq 2} A_k^1(z)) \frac{\partial}{\partial z_1} + (\epsilon_i z_{i+1} + \sum_{k \geq 2} A_k^i(z)) \frac{\partial}{\partial z_i} + \left(\sum_{k \geq 2} A_k^n(z)\right) \frac{\partial}{\partial z_n}$$

where $\epsilon_j \in \{0,1\}$, $\forall j = 1, ..., n-1$. In the chart of the blowing-up $y_1 = z_1, y_i = z_i/z_1 (2 \le i \le n)$, we have that the strict transform $\tilde{\mathcal{F}}_Z$ is generated by $\tilde{Z} = \sum_{i=1}^n \tilde{A}_i \frac{\partial}{\partial y_i}$, where:

$$\begin{split} \tilde{A}_1(y) &= y_1 y_2 + \sum_{k \geq 2} A_k^1(\hat{y}) y_1^k \\ \tilde{A}_i(y) &= \epsilon_i y_{i+1} - y_2 y_i + \sum_{k \geq 2} [A_k^i(\hat{y}) - y_i A_k^1(\hat{y})] y_1^{k-1}, \ 2 \leq i \leq n-1 \\ \tilde{A}_n(y) &= -y_2 y_n + \sum_{k \geq 2} [A_k^n(\hat{y}) - y_n A_k^1(\hat{y})] y_1^{k-1} \end{split}$$

with $\hat{y} = (1, y_2, \dots, y_n)$. Thus

$$\tilde{Z}(0, y_2, \dots, y_n) = \sum_{i=2}^{n-1} (\epsilon_i y_{i+1} - y_2 y_i) \frac{\partial}{\partial y_i} - y_2 y_n \frac{\partial}{\partial y_n}.$$

Now, we consider two cases:

Case 1: There exists $i_0 \in \{2, \ldots, n-1\}$ such that $\epsilon_{i_0} = 0$. In this case:

$$\tilde{Z}(0, y_2, \dots, y_n) = \sum_{\substack{i=2\\i\neq i_0}}^{n-1} (\epsilon_i y_{i+1} - y_2 y_i) \frac{\partial}{\partial y_i} - y_2 y_{i_0} \frac{\partial}{\partial y_{i_0}} - y_2 y_n \frac{\partial}{\partial y_n}$$

It is easy to see that $\tilde{Z}(0,\ldots,0,y_{i_0+1},0,\ldots,0)=0,\ \forall\ y_{i_0+1}\in\mathbb{C}$, therefore $\#\operatorname{Sing}(\tilde{\mathcal{F}}_Z)=\infty$, and so p is not an A.I.S.

Case 2: $\epsilon_2 = \cdots = \epsilon_{n-1} = 1$. In this case it is not difficult to see that $0 \in \mathbb{C}^n$ in the chart $y_1 = z_1$, $y_i = z_i/z_2 (2 \le i \le n)$, is the unique singularity of \mathcal{F}_Z , moreover:

$$D\tilde{Z}(0) = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ \alpha_2 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ \alpha_{n-1} & 0 & 0 & \dots & 0 & 1 \\ \alpha_n & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$
 (2.2)

where $\alpha_i = A_2^i(1, 0, \dots, 0), 2 \le i \le n$.

The characteristic polynomial of $D\tilde{Z}(0)$ is $\Delta(t) = t^n$. In order to obtain the Jordan canonical form of $D\tilde{Z}(0)$, we shall compute the minimum polynomial m(t) of $D\tilde{Z}(0)$. Observe that:

$$\tilde{M} = D\tilde{Z}(0) = \begin{pmatrix} 0 & \Theta \\ P & R_{n-1}(1) \end{pmatrix}$$
 (2.3)

where $0 \in \mathbb{C}^{1 \times 1} \approx \mathbb{C}$, $\Theta = [0 \dots 0] \in \mathbb{C}^{1 \times (n-1)} \approx \mathbb{C}^{n-1}$, $P^t = [\alpha_2 \dots \alpha_n] \in \mathbb{C}^{1 \times (n-1)} \approx \mathbb{C}^{n-1}$ and $R_{n-1}(1) \in \mathbb{C}^{(n-1) \times (n-1)}$ is the upper triangular matrix of order one. (Here $\mathbb{C}^{n \times m}$ denotes the matrix space of n rows and m columns). We will denote $R_{n-1}(k) = [R_{n-1}(1)]^k$, $\forall k \in \mathbb{Z}^+$. Under these notations, it is not difficult to prove that:

$$\tilde{M}^k = \begin{pmatrix} 0 & \Theta \\ R_{n-1}(k-1)P & R_{n-1}(k) \end{pmatrix} \ \forall \ k \in \mathbb{Z}^+$$
 (2.4)

Since $R_{n-1}(k) = 0$ if and only if $k \ge n-1$ we have that $\tilde{M}^k \ne 0$, $\forall 1 \le k \le n-2$. Observe that

$$\tilde{M}^{n-1} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ \alpha_n & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

thus, we have two possibilities:

- i) If $\alpha_n = 0$ then $M^{n-1} = 0$, and so $m(t) = t^{n-1}$. Therefore $D\tilde{Z}(0)$ has Jordan canonical form (4.13) with $\epsilon_2 = \cdots = \epsilon_{n-2} = 1$ and $\epsilon_{n-1} = 0$. Thus 0 is not an A.I.S. of \mathcal{F}_Z .
- ii) If $\alpha_n \neq 0$ then we affirm that there exists a linear change of coordinates φ such that $\varphi^* \tilde{Z}$ satisfies the conditions in Case 2-(i). In fact, we define the linear maps $\varphi = (\varphi_1, \ldots, \varphi_n) : \mathbb{C}^n \to \mathbb{C}^n$ and $\psi = (\psi_1, \ldots, \psi_n) : \mathbb{C}^n \to \mathbb{C}^n$, where:

$$\varphi_1(x) = \frac{1}{\alpha_n} x_n, \ \varphi_2(x) = x_1 \text{ and } \varphi_i(x) = x_{i-1} - \frac{\alpha_{i-1}}{\alpha_n} x_n \ (3 \le i \le n)$$

$$\psi_1(y) = y_2, \ \psi_i(y) = \alpha_i y_1 + y_{i+1} \ (2 \le i \le n-1) \text{ and } \psi_n(y) = \alpha_n y_1.$$

It is clear that $\psi = \varphi^{-1}$. Now, we define $X = \varphi^* \tilde{Z} = \psi \tilde{Z} \circ \varphi$. If we denote $X = \sum_{i=1}^n B_i \frac{\partial}{\partial x_i}$, then $B_1 = \tilde{A}_2 \circ \varphi$, $B_i = \alpha_i \tilde{A}_1 \circ \varphi + \tilde{A}_{i+1} \circ \varphi$ $\varphi(2 \leq i \leq n-1)$ and $B_n = \alpha_n \tilde{A}_1 \circ \varphi$. Since $DX(0) = \psi D\tilde{Z}(0)\varphi$; an easy computation shows that $DX(0) = R_n(1)$, moreover, in the chart $u_1 = x_1, \ u_i = x_i/x_1 (2 \leq i \leq n)$; we have that $D\tilde{X}(0)$ is like (2.3) with $P^t = [\beta_2 \cdots \beta_n]$, where $\beta_i = B_2^i(1, 0, \ldots, 0), \ 2 \leq i \leq n$. Note that:

$$\beta_n = B_2^n(1, 0, \dots, 0) = \frac{\partial^2 B_n}{\partial x_1^2}(0, \dots, 0) = \alpha_n \frac{\partial^2 \tilde{A}_1}{\partial y_2^2}(0, \dots, 0) = 0.$$

Thus 0 is not an A.I.S. of $X = \varphi^* \tilde{Z}$. This finishes the proof of Lemma 1.

3. Reduction of Singularities With Multiplicity One

Let p in \mathcal{M}^n a reduced point of the foliation \mathcal{F}_Z . If p is a district point then its blowing-up is non-singular, thus we shall consider the case p is non-districtal. Let $\lambda_1, \ldots, \lambda_s$ be the eigenvalues of the linear part of

DZ(p), then the characteristic polynomial of M = DZ(p) is

$$\Delta(t) = \prod_{k=1}^{s} (t - \lambda_k)^{r_k}$$
(3.1)

where $\sum_{k=1}^{s} r_k = n$.

Thus, there exists $z=(z_1,\ldots,z_n)$ local coordinates of a neighborhood of p in \mathcal{M}^n such that $p=(0,\ldots,0)\in\mathbb{C}^n$ and M has Jordan canonical form:

$$M = \operatorname{diag}[M_1 \cdots M_s] \tag{3.2}$$

where $M_k \in \mathbb{C}^{r_k \times r_k}$ is the Jordan block belonging to the eigenvalue λ_k i.e.:

$$M_{k} = \begin{pmatrix} \lambda_{k} & \epsilon_{1}^{(k)} & 0 & \dots & 0 & 0 \\ 0 & \lambda_{k} & \epsilon_{2}^{(k)} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{k} & \epsilon_{r_{k}-1}^{(k)} \\ 0 & 0 & 0 & \dots & 0 & \lambda_{k} \end{pmatrix}$$
(3.3)

where $\epsilon_i^{(k)} \in \{0, 1\}, 1 \leq i \leq r_k - 1 \text{ and } 1 \leq k \leq s.$

A necessary and sufficient condition for \mathcal{F}_Z has isolated singularities is that $\epsilon_i^{(k)} = 1$, $\forall 1 \leq i \leq r_k - 1$ and $1 \leq k \leq s$. More specifically, we have the following result:

Proposition 2. Let $p \in \mathcal{M}^n$ be a non-discritical, reduced singular point of the foliation \mathcal{F}_Z . The following assertions are equivalent:

$$a) \# \operatorname{Sing}(\tilde{F}_Z) < \infty.$$

 $b) DZ(0) = \operatorname{diag}[M(\lambda_1) \dots M(\lambda_s)]$ (3.4)

where $M(\lambda_k) = \lambda_k I + R_{r_k}(1)$, $\forall k = 1, \ldots, s$. (Here $I \in \mathbb{C}^{r_k \times r_k}$ is the identity matrix and $R_{r_k}(1) \in \mathbb{C}^{r_k \times r_k}$ is the upper triangular matrix of order one).

Proof.

 $a) \Rightarrow b$) In the chart $z = (z_1, \ldots, z_n)$ above, \mathcal{F}_Z is generated by the vector field

$$Z = \sum_{i=1}^{n} \left(\sum_{k \ge 1} A_k^i \right) \frac{\partial}{\partial z_i}$$

By (3.2) and (3.3) we have that:

$$A_1^i(z) = \lambda_l z_i + \epsilon_{i-t_{l-1}}^{(l)} z_{i+1}, \ t_{l-1} + 1 \le i \le t_l - 1, \ 1 \le l \le s$$

$$A_1^{t_l}(z) = \lambda_l z_{t_l}, \ 1 \le l \le s$$

$$(3.5)$$

where $t_0 = 0$ and

$$t_l = \sum_{k=1}^{l} r_k, 1 \le l \le s.$$

Suppose by contradiction that there exists $i_0 \in \{1, \ldots, r_1 - 1\}$ such that $\epsilon_{i_0}^{(1)} = 0$. In the chart $y_1 = z_1$, $y_i = z_i/z_2$ ($2 \le i \le n$), we have that:

$$\begin{split} \tilde{Z}(0,y_2,\ldots,y_n) &= \sum_{i=2}^n [A_1^i(\hat{y}) - y_i A_1^1(\hat{y})] \frac{\partial}{\partial y_i} \\ &= \sum_{i=2}^{r_1-1} [A_1^i(\hat{y}) - y_i A_1^1(\hat{y})] \frac{\partial}{\partial y_i} + [A_1^{r_1}(\hat{y}) - y_{r_1} A_1^1(\hat{y})] \frac{\partial}{\partial y_{r_1}} \\ &+ \sum_{l=2}^s \left\{ \sum_{i=t_{l-1}+1}^{t_l-1} [A_1^i(\hat{y}) - y_i A_1^1(\hat{y})] \frac{\partial}{\partial y_i} \right. \\ &+ \left. [A_1^{t_l}(\hat{y}) - y_{t_l} A_1^1(\hat{y})] \frac{\partial}{\partial y_{t_l}} \right\} \end{split}$$

where $\hat{y} = (1, y_2, \dots, y_n)$. From (3.5):

$$\tilde{Z}(0, y_2, \dots, y_n) = \sum_{i=2}^{r_1 - 1} [\epsilon_i^{(1)} y_{i+1} - \epsilon_1^{(1)} y_2 y_i] \frac{\partial}{\partial y_i} - [\epsilon_1^{(1)} y_2 y_{r_1}] \frac{\partial}{\partial y_{r_1}} \\
+ \sum_{l=2}^{s} \sum_{i=t_{l-1} + 1}^{t_l - 1} [(\lambda_l - \lambda_1 - \epsilon_1^{(1)} y_2) y_i + \epsilon_{i-t_{l-1}}^{(\ell)} y_{i+1}] \frac{\partial}{\partial y_i} \\
+ \sum_{l=2}^{s} [\lambda_l - \lambda_1 - \epsilon_1^{(1)} y_2] y_{t_l} \frac{\partial}{\partial y_{t_l}}$$

It follows that $\tilde{Z}(0,\ldots,0,y_{i_0+1},0,\ldots,0)=0$, thus $\#\operatorname{Sing}(\tilde{F}_Z)=\infty$, which is a contradiction. We conclude that $\epsilon_i^{(1)}=1, \ \forall 1\leq i\leq r_1-1$ and so $M_1=M(\lambda_1)=\lambda_1 I+R_{r_1}(1)$.

For proving that $M_{\ell} = M(\lambda_l) = \lambda_l I + R_{r_l}(1), (l = 2, ..., s);$ we consider the chart $y_j = z_j, y_i = z_i/z_j (i = 1, ..., n, i \neq j)$ where j =

 $t_{l-1} + 1$ and we proceed as above.

 $(a.5) \Rightarrow (a)$ By hypotheses and (a.5), we have that:

$$A_1^i(z) = \lambda_l z_i + z_{i+1}, \ t_{l-1} + 1 \le i \le t_l - 1, \ 1 \le l \le s$$

$$A_1^{t_l}(z) = \lambda_l z_{t_l}, \ 1 \le l \le s$$
(3.6)

In the chart $y_1 = z_1, y_i = z_i/z_1 (2 \le i \le n)$, from (3.6) we obtain:

$$\tilde{Z}(0, y_{2}, \dots, y_{n}) = \sum_{i=2}^{r_{1}-1} [y_{i+1} - y_{2}y_{i}] \frac{\partial}{\partial y_{i}} - y_{2}y_{r_{1}} \frac{\partial}{\partial y_{r_{1}}} + \sum_{l=2}^{s} \left\{ \sum_{i=t_{l-1}+1}^{t_{l}-1} [(\lambda_{l} - \lambda_{1} - y_{2})y_{i} + y_{i+1}] \frac{\partial}{\partial y_{i}} \right. (3.7) + [\lambda_{l} - \lambda_{1} - y_{2}]y_{t_{l}} \frac{\partial}{\partial y_{t_{l}}} \right\}$$

It follows that $(0, \ldots, 0)$ is the unique singularity of \tilde{F}_Z in this chart. Now, for $i_0 \in \{2, \ldots, r_1 - 1\}$ (respectively $i_0 = r_1$), we consider the chart $y_{i_0} = z_{i_0}$, $y_i = z_i/z_{i_0}$, $1 \le i \le n$, $i \ne i_0$ (respectively $y_{r_1} = z_{r_1}$, $y_i = z_i/z_{r_1}$, $1 \le i \le n$, $i \ne r_1$).

Denoting

$$y_0 = (y_1, \dots, y_{i_0-1}, 0, y_{i_0+1}, \dots, y_n)$$

and

$$\hat{y} = (y_1, \dots, y_{i_0-1}, 1, y_{i_0+1}, \dots, y_n)$$

respectively

$$y_0 = (y_1, \dots, y_{r_1-1}, 0, y_{r_1+1}, \dots, y_n)$$

and

$$\hat{y} = (y_1, \dots, y_{r_1-1}, 1, y_{r_1+1}, \dots, y_n),$$

from (1.9) and (3.7), we have that:

$$\tilde{Z}(y_{0}) = \sum_{\substack{i=1\\i\neq i_{0}}}^{n} [A_{1}^{i}(\hat{y}) - y_{i}A_{1}^{i_{0}}(\hat{y})] \frac{\partial}{\partial y_{i}}$$

$$= \sum_{\substack{i=1\\i\neq i_{0}-1}}^{r_{1}-1} [y_{i+1} - y_{i}y_{i_{0}+1}] \frac{\partial}{\partial y_{i}}$$

$$+ [1 - y_{i_{0}-1}y_{i_{0}+1}] \frac{\partial}{\partial y_{i_{0}-1}} - y_{i_{0}+1}y_{r_{1}} \frac{\partial}{\partial y_{r_{1}}}$$

$$+ \sum_{l=2}^{s} \left\{ \sum_{i=t_{l-1}+1}^{t_{l-1}} [(\lambda_{l} - \lambda_{1} - y_{i_{0}+1})y_{i} + y_{i+1}] \frac{\partial}{\partial y_{i}} + [\lambda_{l} - \lambda_{1} - y_{i_{0}+1}]y_{t_{l}} \frac{\partial}{\partial y_{t_{j}}} \right\}$$

$$(3.8)$$

(respectively)

$$\tilde{Z}(y_0) = \sum_{\substack{i=1\\i\neq r_1}}^n [A_1^i(\hat{y}) - y_i A_1^{r_1}(\hat{y})] \frac{\partial}{\partial y_i}$$

$$= \sum_{\substack{i=1\\i\neq r_1}}^{r_1 - 1} y_{i+1} \frac{\partial}{\partial y_i} + \frac{\partial}{\partial y_{r_1 - 1}}$$

$$+ \sum_{\substack{l=2\\i=t_{l-1}+1}}^s \sum_{i=t_{l-1}+1}^{t_l - 1} [(\lambda_l - \lambda_1) y_i + y_{i+1}] \frac{\partial}{\partial y_i}$$

$$+ \sum_{\substack{l=2\\l=2}}^s [\lambda_l - \lambda_1] y_{t_l} \frac{\partial}{\partial y_{t_l}}$$
(3.9)

From (3.8) and (3.9), it follows that $\tilde{\mathcal{F}}_Z$ has not singularities in these charts.

Similarly, we can prove that $\operatorname{Sing}(\tilde{\mathcal{F}}_Z) = \{\tilde{p}_1, \dots, \tilde{p}_s\}$, where \tilde{p}_l is the zero at the chart $y_j = z_j$, $y_i = z_i/z_j$, $i = 1, \dots, n$, $i \neq j$, $1 \leq l \leq s$ and $j = t_{l-1} + 1$. This finishes the proof of Proposition 2.

Remark. The points $\tilde{p}_1, \ldots, \tilde{p}_s$ above are non-districtial singularities of $\tilde{\mathcal{F}}_Z$.

Now, we consider the linear part of \tilde{Z} at each non-distributional singular point $\tilde{p}_1, \ldots, \tilde{p}_s$. In the chart $y_1 = z_1$, $y_i = z_i/z_1 (2 \le i \le n)$, it is not difficult to see that:

$$D\tilde{Z}(0) = \begin{pmatrix} M_1 & \Theta & \dots & \Theta \\ P_1 & M(\lambda_2 - \lambda_1) & \dots & \Theta \\ \vdots & \vdots & & \vdots \\ P_{s-1} & \Theta & \dots & M(\lambda_s - \lambda_1) \end{pmatrix}$$
(3.10)

where $M_1 \in \mathbb{C}^{r_1 \times r_1}$, $M(\lambda_l - \lambda_1) \in \mathbb{C}^{r_l \times r_l}$ and $P_{l-1} \in \mathbb{C}^{r_l \times r_1}$ $(l = 2, \dots, s)$ are defined as

$$M_{1} = \begin{pmatrix} \lambda_{1} & 0 & 0 & \dots & 0 \\ \alpha_{2} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \alpha_{r_{1}-1} & 0 & 0 & \dots & 1 \\ \alpha_{r_{1}} & 0 & 0 & \dots & 0 \end{pmatrix} P_{l-1} = \begin{pmatrix} \alpha_{t_{l-1}+1} & 0 & \dots & 0 \\ \alpha_{t_{l-1}+2} & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ \alpha_{t_{l}} & 0 & \dots & 0 \end{pmatrix}$$
(3.11)

and $M(\lambda_l - \lambda_1) = (\lambda_l - \lambda_1)I + R_{r_\ell}(1)$. (Here $\alpha_i = A_2^i(1, 0, \dots, 0), 2 \le i \le n$.) Notice that we have three possibilities for characteristic polynomial $\tilde{\Delta}(t)$ of $\tilde{M} = D\tilde{Z}(0)$:

a) If $\lambda_1 = 0$ then

$$\tilde{\Delta}(t) = t^{r_1} \prod_{l=2}^{s} (t - \lambda_l)^{r_l}$$
(3.12)

b) If $\lambda_l \neq 2\lambda_1$, $\forall l = 2, \dots, s$ then

$$\tilde{\Delta}(t) = t^{r_1 - 1} (t - \lambda_1) \prod_{l=2}^{s} (t - \lambda_l + \lambda_1)^{r_l}$$
(3.13)

c) If there exists $l_0 \in \{2, ..., s\}$ such that $\lambda_1 = 2\lambda_l$ then we can suppose, without loss of generality, than $l_0 = 2$ and so

$$\tilde{\Delta}(t) = t^{r_1 - 1} (t - \lambda_1)^{r_2 + 1} \prod_{l=3}^{s} (t - \lambda_l + \lambda_1)^{r_l}$$
(3.14)

Now, if we will suppose that \tilde{p}_1 satisfies $\#\operatorname{Sing}(\mathcal{F}_Z^{(2)}) < \infty$ where $\mathcal{F}_Z^{(2)} = E_2^* \tilde{\mathcal{F}}_Z$ and E_2 is the blowing-up with center at \tilde{p}_1 , then \tilde{M} is a matrix of type (3.4). More specifically, denoting:

$$[\lambda_1, \dots, \lambda_s; r_1, \dots, r_s] = \operatorname{diag}[M(\lambda_1) \cdots M(\lambda_s)]$$
 (3.15)

we have the following:

Proposition 3. Let $\tilde{p}_1 \in \text{Sing}(\mathcal{F}_Z)$ such that $\# \text{Sing}(\mathcal{F}_Z^{(2)}) < \infty$, then

$$\tilde{M} = \begin{cases} [0, \lambda_{2}, \dots, \lambda_{s}; r_{1}, r_{2}, \dots, r_{s}], \\ if \lambda_{1} = 0 \\ [0, \lambda_{1}, \lambda_{2} - \lambda_{1}, \dots, \lambda_{s} - \lambda_{1}; r_{1} - 1, 1, r_{2}, \dots, r_{s}], \\ if \lambda_{1} \neq 0 \text{ and } \lambda_{l} \neq 2\lambda_{1} \\ [0, \lambda_{1}, \lambda_{3} - \lambda_{1}, \dots, \lambda_{s} - \lambda_{1}; r_{1} - 1, r_{2} + 1, r_{3}, \dots, r_{s}], \\ if \lambda_{1} \neq 0 \text{ and } \lambda_{2} = 2\lambda_{1} \end{cases}$$

Proof. By hypotheses and Proposition 2, the minimum polynomial $\tilde{m}(t)$ of \tilde{M} is $\tilde{m}(t) = \tilde{\Delta}(t)$. Now, considering the cases a), b) and c) above, the proof it follows.

Remark. A similar result is obtained for the other singular points $\tilde{p}_2, \dots \tilde{p}_s \in \text{Sing}(\mathcal{F}_Z)$.

Now, we can assert that if $p \in \mathcal{M}^n$ is a reduced, non-dicritical singular points of the foliation \mathcal{F}_Z such that p is an A.I.S., then do not appear dicritical points in the blowing-up process. In fact, by Proposition 2, any point of $\operatorname{Sing}(\mathcal{F}_Z)$ is a non-dicritical point and by Proposition 3, the linear part of \tilde{Z} is similar to the linear part of Z. So, the proof it follows by induction.

In [C-C-S], the authors study the final forms of an absolutely isolated non-dicritical singularity. Since, if $p \in \mathcal{M}^n$ is a reduced, non-dicritical singular point of the foliation \mathcal{F}_Z such that p is an A.I.S., then p is an absolutely isolated non-dicritical singularity of the foliation \mathcal{F}_Z , and so, we can apply the results in [C-C-S].

References

- [B] I. Bendixson: Sur les points singuliers des équations différentielles, Ofv. Kongl. Vetenskaps Akademiens Förhandlinger, Stokholm, Vol. 9, 186 (1898), p. 635–658.
- [C-C-S] C. Camacho, F. Cano, P. Sad: Absolutely isolated singularities of holomorphic vector fields, Invent. math. 98 (1989), p. 351–369.
- [C-L-S] C. Camacho, A. Lins Neto, P. Sad: Topological invariants and equidesingularization for holomorphic vector fields, J. Differ. Geom. 20 (1984), p. 143–174.
- [C-S] C. Camacho, P. Sad: Pontos singulares de Equações Diferenciais Analíticas, 16° Colóquio Brasileiro de Matemática, IMPA, (1987).
- [C] C. Camacho: On the local structure of conformal mappings and holomorphic vector fields in \mathbb{C}^2 , Asterisque 59–60 (1978), p. 83–94.

- [Ca1] F. Cano: Final forms for a 3-dimensional vector field under blowing-up, Ann. Inst. Fourier 3, 2 (1987), p. 151-193.
- [Ca2] F. Cano: Desingularization strategies for 3-dimensional vector fields, Lecture Notes in Math., Vol. 1259. Berlin, Heidelberg, New York; Springer (1987).
- [Ch] E. Chirka: Complex Analytic Sets, MIA, Kluwer Academic Publishers. Dordrecht, Boston, London (1989).
- [D] H. Dulac: Recherches sur les points singuliers des équations différentielles, J. École polytechnique, Vol. 2, sec. 9 (1904), p. 1–125.
- [G-H] P. Griffiths, J. Harris: Principles of Algebraic Geometry, Willey-Interscience, New York (1978).
- [M-M] J. Mattei, R. Moussu: Holonomie et intégrales premières, Ann. Sci. Ecole. Norm. Sup. (4) 13 (1980), p. 469-523.
- [S] A. Seidenberg: Reduction of singularities of the differentiable equation Ady = Bdx, Amer. J. Math. 90 (1968), p. 248–269.
- [V] A. Ven Den Essen: Reduction of singularities of the differentiable equation Ady = Bdx, Lecture Notes in Math., Vol. 712, p. 44–59, Springer-Verlag.

Renato Mario Benazic Tome

Universidad Nacional Mayor de San Marcos Facultad de Ciencias Matematicas C. U. Pab. de Matematicas Av. Venezuela s/n, Lima Casilla Postal 05-0021 Lima, Peru